Cherednik Algebras for Algebraic Curves
نویسنده
چکیده
For any algebraic curve C and n ≥ 1, P. Etingof introduced a ‘global’ Cherednik algebra as a natural deformation of the cross product D(Cn)⋊Sn, of the algebra of differential operators on Cn and the symmetric group. We provide a construction of the global Cherednik algebra in terms of quantum Hamiltonian reduction. We study a category of character Dmodules on a representation scheme associated to C and define a Hamiltonian reduction functor from that category to category O for the global Cherednik algebra. In the special case of the curve C = C, the global Cherednik algebra reduces to the trigonometric Cherednik algebra of type An−1, and our character D-modules become holonomic D-modules on GLn(C) × Cn. The corresponding perverse sheaves are reminiscent of (and include as special cases) Lusztig’s character sheaves.
منابع مشابه
Notes on Cherednik Algebras and Algebraic Combinatorics, Montreal 2017
These are the notes for a short course given at the summer school Equivariant Combinatorics at the CRM in Montreal. The notes contain somewhat more material than was practical to cover in the course. The intended audience was graduate students and researchers in algebraic combinatorics with no prior experience with Cherednik algebras, but who are interested in the algebraic combinatorics having...
متن کاملCherednik and Hecke Algebras of Varieties with a Finite Group Action
Let h be a finite dimensional complex vector space, and G be a finite subgroup of GL(h). To this data one can attach a family of algebras Ht,c(h, G), called the rational Cherednik algebras (see [EG]); for t = 1 it provides the universal deformation of G ⋉ D(h) (where D(h) is the algebra of differential operators on h). These algebras are generated by G, h, h with certain commutation relations, ...
متن کاملLowest-weight representations of Cherednik algebras in positive characteristic
Lowest-weight representations of Cherednik algebras H~,c have been studied in both characteristic 0 and positive characteristic. However, the case of positive characteristic has been studied less, because of a lack of general tools. In positive characteristic the lowest-weight representation Lc(τ) of the Cherednik algebra is finite-dimensional. The representation theory of complex reflection gr...
متن کاملApplications of Procesi Bundles to Cherednik Algebras
In this talk we describe some applications of Procesi bundles that appeared in Gufang’s talk to type A Rational Cherednik algebras introduced in Jose’s talk. We start by recalling Procesi bundles, quantum Hamiltonian reductions, and Cherednik algebras. Then we apply Procesi bundles to relating the spherical Rational Cherednik algebras to quantum Hamiltonian reductions. Finally, we study the def...
متن کاملDrinfeld Orbifold Algebras
We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008